Jikadiketahui matriks A dan B seperti di bawah ini, maka tentukanlah hubungan antara B + A dan A + B. a - a + 3ab + a 2 + 2 = 0 a 2 + 3ab + 2 = 0 ---> persamaan kuadrat Agar persamaan di atas dapat diselesaikan, kita cari nilai b terlebih dahulu. b + 4 + b = 6 2b = 6 - 4
Banyak sekali pertanyaan seputar β€œbagaimana kak menghitung determinan matriks?” oke... postingan ini adalah jawaban untuk kalian yang masih bingung gimana sih cara menentukan determinan matriks. Yuk langsung kita masuk ke matriks sering dituliskan det A. Determinan hanya ada pada matriks persegi. Pada kesempatan ini kakak akan memberi tahu cara menentukan determinan matriks ber ordo 2 x 2 dan 3 x Matriks ordo 2 x 2Misalkan ada matriks A = Rumus det A = A = = ad - bc2. Matriks ordo 3 x 3Untuk matriks ordo 3 x 3 kakak akan berikan rumus dengan metode Sarrus, karena metode ini menurut kakak paling mudah dan sedikit lebih cepat ada matriks A = Rumus det A = A = = aei + bfg + cdh – ceg + afh + bdiKalian juga perlu ingat-ingat sifat determinan berikut1. Det AB = det A – det B2. Det A + B β‰  det A + det B3. Det AT = det AGimana nih? Udah sedikit paham kan? Supaya makin paham lagi... kakak akan beri contoh soal dan Tentukan nilai determinan dari matriksA = JawabDet A = 5 x 2 – 4 x 1 = 10 – 4 = 62. Diketahui matriks A =. Jika determinan dari matriks A tersebut adalah 1, maka tentukanlah nilai x yang memenuhi!JawabDet A = 12xx + 5 – 3 x + 1 = 12x2 + 10x – 3x – 3 = 12x2 + 7x – 3 = 12x2 + 7x – 3 – 1 = 02x2 + 7x – 4 = 02x – 1x + 4 = 02x – 1 = 0 atau x + 4 = 02x = 1 x = -4x = Β½ Jadi, nilai x yang memenuhi = -4 atau Β½ 3. Tentukanlah determinan dari matriks JawabDet = = 1. 3 . -1 + 2 . 0 . 1 + 1 . -2 . -1 – 1 . 3. 1 + -1 . 0 . 1 + -1 . -2 . 2 = -3 + 0 + 2 – 3 + 0 + 4 = -1 – 7 = -84. Diketahui matriks B = Hitunglah nilai A.Jawab A = = 2 . 1 . 1 + -3 . 1 . 3 + 2 . -1 . -2 – 3 . 1 . 2 + -2 . 1 . 2 + 1 . -1 . -3 = 2 – 9 + 4 – 6 – 4 + 3 = -3 – 5 = -85. Jumlah akar-akar persamaan. Tentukanlah nilai x!Jawab2x – 1x + 2 – 2 x + 2 = 02x2 + 4x – x – 2 – 2x – 4 = 02x2 + 3x – 2x – 2 – 4 = 02x2 + x – 6 = 02x - 3x + 2 = 02x – 3 = 0 atau x + 2 = 02x = 3 x = -2x = 3/2Jadi, nilai x yang memenuhi adalah -2 atau 3/26. Diketahui matriks. Jika det AB = det C, maka tentukanlah nilai x yang memenuhi!Jawabdet AB = det Cdet A – det B = det C3 . 1 – 4 . -1 – 0 . -1 – 2x = -2 . 4 – -2 . -33 + 4 – 0 – 2x = -8 – 67 + 2x = -142x = -14 – 72x = -21x = -21/27. Jika matriks P = adalah matriks singular, tentukan nilai a yang memenuhi!JawabMatriks singular adalah jika nilai determinannya P = 0a . a. 5 + 2 . 4. a + 3 . 1 . 2 – a . a . 3 + 2 . 4 . a + 5 . 1 . 2 = 05a2 + 8a + 6 – 3a2 + 8a + 10 = 02a2 – 4 = 02a2 – 2 = 0a2 – 2 = 0a2 = 2a = Β± √28. Jika, dan det A = det B, maka nilai x yang memenuhi adalah...Jawab3x2 – 10x = 15 – 2x23x2 + 2x2 – 10x – 15 = 05x2 – 10x – 15 = 0x2 – 2x – 3 = 0x – 3x + 1 = 0x – 3 = 0 atau x + 1 = 0x = 3 x = -1Jadi, nilai x yang memenuhi adalah -1 atau disini dulu ya... sampai bertemu di postingan-postingan yang akan datang...
Diketahuimatriks A=(3 2 0 5) dan B=(-3 -1 -17 0). Jika A^T transpos matriks A dan AX=B+A^T, determinan matriks X adalah. Share. Cek video lainnya. Teks video. halo friend pada soal diketahui matriks A dan B kemudian jika ada itu merupakan transpose dari matriks A yang diketahui persamaan AX = B ditambah a transpose ditanyakan adalah

Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks A=2 0 0 2 dan B=5 6 7 8. Diberikan pernyataan-pernyataan berikut 1 A^2=2A 2 3 4 Dari pernyataan tersebut yang benar adalah ....Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoDisini kita memiliki soal yang berkaitan dengan matriks untuk mengerjakan soal seperti ini kita bisa mengecek 11 pernyataannya dan kita kerjakan masing-masing untuk mengerjakan semua pernyataan itu tentunya kita harus tahu bentuk dari perkalian matriks Karena semua pernyataannya itu adalah tentang perkalian matriks contoh di sini ada matriks A B C D dikalikan dengan mata efgh seperti ini. Nah ini kalau dikalikan itu harus kalikan baris dengan kolom nya dengan begitu di sini kita akan mendapatkan hasil perkalian matriks yaitu adalah A E A ditambah b f kemudian di sini yang sebelahnya atau yang baris 1 kolom kedua itu adalah AG + b. H kemudian yang baris kedua kolom pertama itu adalah c + d e f dan yang baris keduaYang kedua itu adalah CG + D H dengan bentuk tersebut kita bisa mengerjakan semua pernyataan-pernyataan ya kita mulai dari yang pernyataan pertama kita harus buktikan bahwa matriks A jika di kuadrat itu sama dengan 2 dikali matriks A matriks A nya adalah 2002 dikali 2002 ini harus = 2 x 2002 jika kita lakukan perkalian matriks dengan bentuk yang sudah dituliskan di atas kita akan mendapatkan hasil matriks yaitu adalah 40040 Kemudian untuk yang di ruas kanan di sini duanya di kali masukkan saja ke dalam matriksnya Dengan begitu kita akan mendapatkan matriks 4004. Nah karena ini sama berarti pernyataan yang pertama itu benar lanjut ke pernyataan yang kedua di sini kita harus membuktikan matriks A kali B ini akan sama dengan matriks b. * a matriks A nya itu adalah 2002 b-nya itu adalah768 yang harus = b nya 5768 * matriks hanya 2002 untuk yang ruas kiri kita kali dengan bentuk matriks yang di atas itu kita akan mendapatkan yang baris 1 kolom pertamanya itu adalah 2 * 5 + 0 * 7 itu adalah 10 lanjut ke yang baris kolom kedua itu 2 * 6 + 0 * 8 adalah 12 kemudian yang baris kedua kolom pertama 0 * 5 + 2 * 7 berarti 14 yang baris 2 kolom 20 * 6 + 2 * 8 berarti 16 lanjut ke yang ruas kanan nya Nah di situ kita gunakan perkalian matriks lagi 5 x 2 ditambah 6 x 0 itu adalah 10 lalu 5 * 0 + 6 * 2 berarti 12 7 * 2 + 8 * 0 adalah 14 lalu 7 Kali+ 8 * 2 adalah 16 ruas kiri dan kanannya sama berarti pernyataan kedua benar lanjut ke pernyataan ketiga di situ kita punya a * b matriks A dikali matriks b = 2 matriks B dan matriks tanyakan 2002 dikali matriks b nya yaitu 5768 = 2 * matriks b nya yaitu 5768 ini. Jika kita kerjakan kita lihat saja nih dari pernyataan kedua di sini kan ada matriks A dikali matriks B juga Hasilnya itu adalah ini kita pakai yang sama hati ini 10 14 12 16 ini Kemudian untuk yang tekanannya 2 nya tinggal di kali masuk saja menjadi 10 12 14 16. Nah. Jika dilihat ini matriks di ruas kiri dan kanannya sama berarti pernyataan ketigaLanjut ke persamaan keempat atau Pernyataan ke-4 di situ kita punya matriks B * matriks A * matriks B ini = 2 matriks b kuadrat berarti jika kita masukkan di sini kita punya 5768 kali hanya itu 2002 Lalu * 5768 = 2 * matriks b nya 5768 yang kuadrat berarti dikali lagi 5768 untuk yang ruas kiri di sini kita kalikan matriks yang ini dulu baru hasilnya dikalikan dengan matriks yang ini yang ruas kanan di sini kita kalikan ke-2 matriks ini dulu baru hasilnya dikali dengan skalar 2 jika kita kerjakan dengan cara seperti itu kita akan mendapatkan hasil matriks yang seperti ini Dengan begitu kita bisa lihat bahwa matriks di ruas kiri dan kanannya sama berarti pernyataan ke-4 itu betul jangan begitu jawabannya adalah yang sampai jumpa di pertanyaan nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Tentukanhimpunan penyelesaian di bawah ini: Persamaan matriks bentuk ax=b dan xa=b kali ini saya akan membahas materi matriks lainnya. Menggunakan rumus matriks ordo 2Γ—2 akan. Untuk lebih jelasnya perhatikan contoh berikut. A b t a t b t a t t a. Cara cepat menyelesaikan soal invers matriks ordo 3 Γ— 3; Carilah matriks x berordo 2 x 2 yang

Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks-matriks A=-c 2 1 0, B=4 a b+5 -6, C=-1 3 0 2, dan D=4 b -2 3. Jika 2A-B=CD, maka nilai a+b+c adalah ...Operasi Pada MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videologo Vans di sini kita punya soal tentang matriks diketahui matriks matriks sebagai berikut 6 matriks A matriks B matriks A dan matriks B kita diberikan persamaan untuk dua matriks A dikurang matriks B = matriks A x matriks D kita rayakan nilai dari a kecil B kecil c kecil adalah jadi disini kita mulai terlebih dahulu dari persamaan yang diberikan 2 dikurang matriks B = matriks A yang dikali dengan matriks D berarti dua matriks A adalah 2 dikalikan dengan matriks yaitu min c kecil 210 dikurangi dengan matriks B yaitu 4 A kecil B kecil + 5 yang di sini kita punya min 6 ini akan = matriks c nya kita punya min 1302 dikali dengan matriks d adalah 4 b kecil Min 23 kita mulai terlebih dahulu dari yang paling kiri kita punya Perkalian antara skalar dengan matriks yang berarti setiap elemen pada matriks ya kita kali dengan skalar tersebut terjadi dalam kasus ini setiap elemen pada matriks A kita kalikan dengan 2 maka kita dapati di sini menjadi 2 dikalikan dengan mindset kecil 2 dikalikan dengan 22 X dan 12 dikalikan 60 lalu kita kurangi dengan diketahuinya untuk 4 lalu a kecil B kecil dan juga di sini minus 6 perhatikan bawahnya kan = Min 1302 dikalikan dengan 4 kecil Min 23 yang berarti min 2 C kecil Kalau di sini ada 420 harus kita kurangi dengan 4 A kecil B kecil + 5 + min 6 = Min 1302 dikalikan dengan 4 b kecil Min 23 Di sini perlu diperhatikan kita punya pengurangan antara dua buah matriks mana ketika kita mengurangi dua buah matriks berarti kita kurangkan untuk setiap elemen yang terletak pada posisi yang sama jadi min 2 sini kita kurangi dengan 44 ini kita kurangi dengan A2 ini kita kurangi dengan api kecil + 50 ini kita kurangin min 6 dan begitu seterusnya jadi kita punya untuk min 2 si kecil ini kita kurangi dengan 4 lalu 4 ini kita kurangin yang anak kecil 2 kita kurangin dengan b kecil yang ditambah 50 kita kurangin dengan min 6 sehingga ini akan sama dengan Sekarang kita akan lakukan untuk Perkalian antara dua buah matriks perlu diperhatikan bahwa cara mengalikan dua buah matriks adalah kita kalikan antara baris dengan kolom Jadi kita mulai terlebih dahulu baris pertama dari matriks kita kalikan dengan kolom pertama dari matriks t ini akan menghasilkan A terletak pada baris pertama kolom pertama dari matriks hasil perkaliannya cara mengalikan adalah setiap permainan kita kalikan lalu kita jumlahkan Kirimin satu ini kita kalikan 43 ini kita akan Minggu lalu kita jumlahkan keduanya jadi kita punya disini untuk min 1 dikalikan dengan 4 ditambah dengan 3 yang dikalikan 6 min 2 sekarang baris pertama dengan kolom ke-2 berarti 1 kita kalikan dengan b ditambah dengan 3 yang dikalikan dengan 3 sekarang untuk baris kedua dengan kolom yang pertama berarti 0 ini kita kalikan dengan 4 lalu ditambahkan dengan 2 yang mengambil 2 kkal untuk baris kedua dengan kolom ke-2 berarti 0 dikalikan dengan b ini selalu disini kita tambahkan dengan 2 yang dikalikan dengan 34 hitung bawah menjadi minus 2 C kecil yang dikurangi 4 harus diketahui untuk Min A kecil ditambah 4 lalu untuk 2 dikurang 5 berarti sama saja dengan min 3 kamu jangan lupa dikurang kita taruh untuk dirinya di depan berarti min b kecil dikurang 30 dikurang min 6 adalah 6 akan sama dengan Sini kita punya untuk Min 4 ditambah dengan min 6 berarti Min 10 min b kecil ditambah 9 berarti kita dapat diskon seperti ini kalau kita punya juga untuk yang ini 0 ditambah dengan min 4 Min 40 + 6 / 6. Perhatikan bahwa kita mendapati dua matriks ini sama yang berarti untuk setiap elemen yang terletak pada posisi yang sama bernilai sama juga jadi di sini bisa kan min 2 C kecil Min 4 ini harus = Min 10 min akar x + 4 X = min b kecil P 9 min b kecil min 3 X = 46 = 6 ini sudah benar Jadi kita perhatikan kita mulai terlebih dahulu untuk min 2 si kecil dikurang 4 hari = Min 10 jadi kita mendapati persamaannya menjadi seperti ini yang berarti untuk min 2 si kecil adalah Min 10 ditambah dengan 4 yaitu min 6 berarti untuk cek kecilnya adalah minus 6 dibagi minus 2 yaitu 3 selanjutnya untuk minta kecil + 4 hari = min b kecil + 9 jadi kita dapat Tuliskan untuk persamaannya menjadi seperti ini dan ini belum kita ketahui Untuk nilai a dan b nya jadi kita akan lompat itu fokus untuk Mindi kecil min 3 Y = Min 4 jadi kita dapati persamaannya menjadi seperti ini berarti untuk min b kecil adalah Min 4 ditambah 3 yaitu min 1 maka B nyala min 1 + min 1 itu 1 jadi kita dapati nilainya adalah 1 * 6 = 6 sudah benar karena kita sudah dapat dinilai baik berarti kita dapat Tentukan nilai dari kita substitusikan nilai belinya nanti ke sini berarti Min A ditambah dengan 4 = min b min 1 ditambah 9 maka disini perhatikan bahwa untuk anak kecilnya berarti adalah 8 dikurang 4 itu kita punya adalah 4 berarti untuk kecilnya adalah Min 4 dari ini semua kita akan mendapati berarti untuk a kecil + B plastik kecil akan sama dengan berarti Min 4 ditambah 1 ditambah dengan 3 yang nilainya adalah 0. Jadi hasil akhirnya adalah 0 pilih opsi yang c. Sampai jumpa di soal berikutSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Karenadeterminan matriks C adalah 0, maka dapat diketahui rank matriks C tidak sama dengan 3 (rank(C) β‰  3), artinya rank matriks C tersebut lebih kecil dari 3 (rank(C) < 3). Langkah selanjutnya adalah mendapatkan determinan dari minor-minor matriks C yang berukuran 2Γ—2.

Rangkuman Materi MatriksOperasi Aljabar Pada MatriksPenjumlahan dan pengurangan matriksPerkalian matriksTranspos MatriksDeterminanInvers MatriksPenerapan Matriks dalam Sistem Persamaan LinearVideo Pembelajaran Matriks Versi 1 Kelas XIVideo Pembelajaran Matriks Versi 2 Kelas XIContoh Soal Matriks Jawaban +PembahasanRangkuman Materi MatriksOperasi Aljabar Pada MatriksMatriks adalah susunan bilangan-bilangan yang dinyatakan dalam baris dan kolomPenjumlahan dan pengurangan matriksDua buah matriks dapat dijumlahkan atau dikurangi jika memiliki ordo yang sama. Caranya yaitu dengan menjumlahkan atau mengurangi elemen seletak,ContohDiketahui matriks-matriks berikutTentukanA + BPerkalian matriksPerkalian Bilangan Real dengan MatriksJika A sebuah matriks dan k bilangan real maka hasil kali kA adalah matriks yang diperoleh dengan mengalikan masing-masing elemen matriks A dengan matriks berikutTentukanlah 3APerkalian dua matriksMatriks A dapat dikalikan dengan matriks B jika banyak kolom matriks A sama dengan banyak baris matriks B. Hasil kalinya adalah jumlah dari hasil kali elemen-elemen pada baris matriks A dengan elemen-elemen pada kolom matriks SoalDiketahui matriks-matriks berikutTentukan ABTranspos MatriksMatriks A transpos At adalah sebuah matriks yang disusun dengan cara menuliskan baris ke-i matriks A menjadi kolom ke–i dan sifat matriks adalah sebagai berikut.A + Bt = At + BtAtt = AcAt = cAt, c adalah konstantaABt = BtAtDeterminanDeterminan dari matriks A dinotasikan dengan AJika Berordo 2Γ—2, menentukan determinannyaJika berordo 3Γ—3 menggunakan kaidah SarrusInvers MatriksInvers dari matriks A dinotasikan dengan A-1Syarat suatu matriks A mempunyai A = 0, maka matriks A tidak mempunyai invers. Oleh karena itu, dikatakan matriks A sebagai matriks A β‰  0, maka matriks A mempunyai invers. Oleh karena itu, dikatakan matriks A sebagai matriks Matriks dalam Sistem Persamaan LinearJika ada sistem persamaan linear + by = ecx + dy = fSistem persamaan linear tersebut dapat kita tuliskan dalam persamaan matriks matriks ini dapat kita selesaikan dengan menggunakan AX = B, maka X A-1B, dengan A β‰  0Jika XA = B, maka X = BA-1, dengan A β‰  0Video Pembelajaran Matriks Versi 1 Kelas XI Part 1 Part 2 Part 3 Part 4Materi & Contoh Soal Matriks Part 1Materi & Contoh Soal Matriks Part 2Materi & Contoh Soal Matriks Part 3Materi & Contoh Soal Matriks Part 4Video Pembelajaran Matriks Versi 2 Kelas XI Part 1 Part 2 Part 3Belajar Matematika Materi dan Contoh Soal Matriks Part IBelajar Matematika Materi dan Contoh Soal Matriks Part 2Belajar Matematika Materi dan Contoh Soal Matriks Part 3Contoh Soal Matriks Jawaban +PembahasanSoal UN 2009Diketahui matriks A = dan B = .jika A’ adalah transpose matriks A dan AX = B + A’ maka determinan matriks x adalah …463327-33-46PEMBAHASAN Jawaban DSoal SNMPTN DASAR 2011jika A adalah matriks 2Γ—2 yang memenuhi dan maka hasil kali adalah …PEMBAHASAN Jawaban CSoal UN 2009Diketahui 3 A X Bt – C = dengan Bt adalah transpose matriks B, maka nilai a dan b masing-masing adalah …-1 dan 21 dan -2-1 dan -22 dan -1-2 dan 1PEMBAHASAN Jawaban ASoal SBMPTN 2014 DASARJika P = dan = 2 P -1dengan P-1 menyatakan invers matriks P, maka x+y=….01234PEMBAHASAN Jawaban CSoal UN 2008Diketahui matriks P = dan Q = Jika P-1 adalah invers matriks P dan Q-1 adalah invers matrik Q. Maka determinan matriks P -1Q-1 adalah…2231-1-10-223PEMBAHASAN Jawaban BSoal SNMPTN 2010 DASARJika M adalah matriks sehingga , maka determinan matriks M adalah ……1-10-22PEMBAHASAN Jawaban ASoal UN 2004Diketahui matriks S = dan M = . Jika fungsi fS+M, S-M adalah …PEMBAHASAN Jawaban ASoal SNMPTN 2012 DASARJika A = , B = , dan det AB = 12 maka nilai x adalah …-6-3036PEMBAHASAN Jawaban BSoal EBTANAS 2003Nilai x2 + 2xy + y2 yang memenuhi persamaan adalah …13579PEMBAHASAN Jawaban ASoal SBMPTN 2014 DASARJika matriks A = , B = Dan C = memenuhi A + B = Ct dengan Ct transpos matriks C maka 2x+3y = …34567PEMBAHASAN Jawaban CSoal EBTANAS 2000Diketahui A = , B = dan A2 = xA + yB. Nilai xy =…-4-1– Β½1Β½2PEMBAHASAN Jawaban BSoal SNMPTN 2014 DASARJika dengan b2 β‰  2a2 maka x + y = ….-2-1012PEMBAHASAN Jawaban CSoal SNMPTN 2012 DASARJika AB = dan det A =2 maka det BA-1 adalah ….86421PEMBAHASAN Jawaban DSoal SNMPTN 2009 DASARMatriks A = mempunyai hubungan dengan matriks B = . Jika matriks C = dan matriks D mempunyai hubungan serupa seperti A dengan B maka matriks C + D adalah …..PEMBAHASAN Jawaban DSoal UM UGM 2004Jika I matriks satuan dan matriks A = sehingga A2 = pA + ql maka p+q sama dengan ….15105-510PEMBAHASAN Jawaban DSoal Jika diketahui matriks Jika P + Q = R’ dan R’ merupakan transpose matriks R, Tentukan nilai x+y!PEMBAHASAN Diketahui P + Q = C’ Maka diperoleh6 + x = 3, maka x = -33 + x – y = 8, maka 3 + -3 – y = 8 y = -8Sehingga diperoleh x + y = -3 + -8 = -11Soal Diketahui matriks A = dan B = Tentukan matriks 4AB – BA!PEMBAHASAN Soal P = dan Q =. Matriks P – kQ merupakan matriks singular. Tentukan nilai kPEMBAHASAN Karena Matris P-kQ singular maka determinan matriks tersebut bernilai 0 P – 0 Maka k+1k = 12 k2 + k = 12 k2 + k – 12 = 0 k+4k-3 = 0 Maka nilai yang memenuhi adalah k = -4 dan k = 3Soal Diketahui matriks P = Q = , jika nilai deteminannya adalah 4, Tentukan nilai -2x + y – z = 0PEMBAHASAN Menentukan matriks PQ Diketahui determinannya = 4, maka 8-2x+y+z-0=4 Maka -2x+y+z = 0,5Soal Diketahui matriks P = dan Q = . Tentukan invers matriks PQ PQ-1PEMBAHASAN Menentukan PQ Menentukan PQ-1 Soal Tentukan matriks x jika berlaku PEMBAHASAN Jika Maka matriks X X = Soal Tiga buah matriks P = , Q = , R = . Tentukan nilai x yang memenuhi hubungan = RPEMBAHASAN Menentukan P-1 P-1 = invers matriks P P = P-1 = Menentukan nilai X = = R Maka 3x – 10 = 2 3x = 10 + 2 = 12 x = 4Soal Tentukan determinan matriks Q jika memenuhi PEMBAHASAN Jika Sehingga P. Q = R Menentukan salah satu determinan bisa menggunakan rumusan P.Q = R Q = 5.Q = 10 Q = 2Soal Diketahui sistem persamaan , Tentukan nilai 2x – 5y !PEMBAHASAN Sistem persamaan tersebut diubah menjadi PQ = R Q = Menentukan P-1 P-1 = Maka x = -1 dan y = 1, sehingga 2x – 5y = 2-1 – 51 = -7Soal Sebuah garis 3x + 2y = 6 ditranslasikan dengan matriks , dilanjutkan dilatasi dengan pusat O dan faktor 2. Tentukan hasil transformasinya!PEMBAHASAN Diketahui Translasi dengan M1 = Dilatasi pusat O dan faktor skala 2, M2 = Menentukan hasil transformasi Sehingga nilai x dan y x’ = 6+2x y’ = -8 + 2y Maka hasil transformasinya adalah ⇔ 3x’ – 6 + 2y’ + 8 = 12 ⇔ 3x’ + 2y’ = 14 ⇔ 3x + 2y = 14Soal Jika maka x = …12345PEMBAHASAN Log 3a + 1 = 1 3a + 1 = 10 3a = 9 a = 3 log b – 2 = log a b – 7 = a b – 7 = 3 b = 10 xlog a = log b xlog 3 = log 10 xlog 3 = 1 Maka nilai x = 3 Jawaban CSoal Diketahui persamaan matriks . Maka nilai x + y = …3120183541PEMBAHASAN Dari persamaan matriks di atas diperoleh 12 – x = 1 x = 11 -9 – x + y = 0 -9 – 11 + y = 0 y = 20 Maka x + y = 11 + 20 = 31 Jawaban CSoal Terdapat dua buah matriks P dan Q yaitu dan . Jika PQ = QP, maka = …PEMBAHASAN Jawaban CSoal Diketahui matriks tidak mempunyai invers. Hasil kali semua nilai x dari matriks tersebut adalah …½1-20-Β½PEMBAHASAN x3x – 1 – 2x + 2 = 20 3x2 – x – 2x – 4 = 14 3x2 – 3x – 18 = 0 β†’ dibagi 3 x2 – x – 6 = 0 x – 3x + 2 = 0Maka jumlah semua nilai x yaitu x1 + x2 = 3 + -2 = 1 Jawaban BSoal Diketahui matriks tidak mempunyai invers. Hasil kali semua nilai x dari matriks tersebut adalah …-124-54PEMBAHASAN Matriks tidak mempunyai invers β†’ A = 0 x2 – 3xx – 4 – x + 12x – 5 = 0 x3 – 4x2 – 3x2 + 12x – 2x2 – 5x + 2x – 5 =0 x3 – 7x2 + 12x – 2x2 – 3x – 5 = 0 x3 – 7x2 + 12x – 2x2 + 3x + 5 = 0 x3 – 9x2 + 15x + 5 = 0 a = 1 , b = -9 , c = 15 , d = 5 Maka hasil kali semua nilai x sebagai berikut Jawaban DSoal Jika . Maka determinan matriks Q adalah …01015-3PEMBAHASAN Maka determinan matriks Q yaitu = 2 x 3 – -1 x – 5 = 6 – 5 = 1 Jawaban CSoal Jika M adalah matriks sehingga , maka determinan matriks M adalah …0-1512PEMBAHASAN Misalkan adalah matriks A adalah matriks BMaka determinan matriks M, sebagai berikut Determinan M . determinan A = determinan B Determinan M . ps – rq = - sp + r – - rq + s Determinan M . ps – rq = - ps – sr – - rq – sr Determinan M . ps – rq = – ps – sr + rq + sr Determinan M . ps – rq = – ps + rq Determinan M = Jawaban BSoal Transpos matriks adalah . Jika AT = A-1 , maka ps – qr = …½ dan – Β½0 dan 1dan –– 1 dan 0-1 dan 1PEMBAHASAN AT = A-1 det AT = det A-1 det AT = det AT . det A = 1 ps – qr2 = 1 ps – qr = Β± 1 Jawaban BSoal matriks Maka nilai determinan dari matriks AB + C = …1014182450PEMBAHASAN Diketahui Maka AB + C sebagai berikut Determinan AB + C = 13 x 18 – 22 x 10 = 234 – 220 = 14 Jawaban BSoal matriks dengan 2A – B = C. Maka nilai x – y = …-14-365PEMBAHASAN Diketahui Matriks 2A – B = C 4 – x = 8 β†’ x = – 4 6 + y = – 4 β†’ y = – 10 Maka x – y = - 4 – - 10 = 6 Jawaban DSoal ini adalah persamaan matriksMaka nilai x + y = …-5PEMBAHASAN Menentukan nilai x sebagai berikut 6 + 8x = 0 8x = – 6 Menentukan nilai y sebagai berikut 4 – 2x + 2y = 0 Maka nilai Jawaban ESoal P yang memenuhi adalah …PEMBAHASAN Jawaban CSoal matriks . Maka nilai x + xy – 2y adalah …61231145PEMBAHASAN Menentukan nilai x 3 + x = 6 x = 3Menentukan nilai y y + 9 = 4x y + 9 = 4 . 3 y + 9 = 12 y = 3Maka x + xy – 2y ⇔ 3 + – 2. 3 ⇔ 3 + 9 – 6 ⇔ 6 Jawaban ASoal . Maka DetPQ + R = …-1925-3014-23PEMBAHASAN Maka DetPQ + R = – = -23 Jawaban ESoal matriks tidak mempunyai invers. Maka nilai x adalah …1-22-43PEMBAHASAN Matriks yang tidak memiliki invers jika determinan matriks tersebut adalah 0. Maka Det P = 0 3x + 26 – 42x – 2 = 0 18x + 12 – 8x + 8 = 0 10x + 20 = 0 10x = – 20 x = – 2 Jawaban B[adinserter block=”3β€³] Contohcara menghitung panjang vektor AB: Soal 1: Tentukan panjang vektor a = (2, 4)! Jadi, panjang vektor a = (5, 2)!. Soal 2: Panjang sisi AB dari segitiga ABC dengan titik-titik yang terletak pada A(0, 0); B(2,1); dan C(3, 2) adalah . Jadi, panjang sisi AB sama dengan panjang vektor c yaitu √5 satuan panjang.. Baca Juga: Perbandingan Vektor Contoh Soal dan Pembahasan Jawabanpaling sesuai dengan pertanyaan Diketahui matriks A berukuran 2xx2 dan B=([-1,3],[0,2]) Jika B-A=([2,-1],[1,0])maka det(2A

Diketahuimatriks A = dan B = dengan r 6= 0 dan p 6= 0. r p+1 4 3 Nilai p agar matriks BA tidak memiliki invers adalah Β· Β· Β· Β· A. βˆ’2 C. 0 E. 1 1 1 B. βˆ’ D. 2 2 Soal Matriks (Tingkat SMA) Halaman 5

Terdapatsoal sebagai berikut diketahui matriks A dan B negatif 200 a + b 0 1 B min 1 0 0 0 0 0 0 2 0 3 jika diagonal nilai a b dan c berturut-turut adalah untuk mengerjakan soal tersebut dapat menggunakan konsep sebagai berikut matriks diagonal ialah matriks dan utama yaitu harus ada nilainya dan sisanya itu dapat ditampilkan sebagai berikut
Operasimatriks. 1. A. OPERASI MATRIKS 1. Penjumlahan Matriks Jika matriks A dan B memiliki ordo yang sama, maka jumlah matriks A dan B adalah matriks yang diperoleh dengan menjumlahkan setiap elemen matriks A dengan elemen matriks B yang bersesuaian (seletak). Jumlah matriks A dan B dinotasikan dengan A + B. Contoh : Diketahui : 𝐴 = [ 1 0 .
  • 3vuy1tjbh7.pages.dev/112
  • 3vuy1tjbh7.pages.dev/302
  • 3vuy1tjbh7.pages.dev/129
  • 3vuy1tjbh7.pages.dev/472
  • 3vuy1tjbh7.pages.dev/55
  • 3vuy1tjbh7.pages.dev/307
  • 3vuy1tjbh7.pages.dev/314
  • 3vuy1tjbh7.pages.dev/419
  • diketahui matriks a 2 0